The toughness of split graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalized Tenacity and Normalized Toughness of Graphs

In this paper, we introduce the novel parameters indicating Normalized Tenacity ($T_N$) and Normalized Toughness ($t_N$) by a modification on existing Tenacity and Toughness parameters.  Using these new parameters enables the graphs with different orders be comparable with each other regarding their vulnerabilities. These parameters are reviewed and discussed for some special graphs as well.

متن کامل

Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness

Akers et al. (Proceedings of the International Conference on Parallel Processing, 1987, pp. 393–400) proposed an interconnection topology, the star graph, as an alternative to the popular n-cube. Jwo et al. (Networks 23 (1993) 315–326) studied the alternating group graph An. Cheng et al. (Super connectivity of star graphs, alternating group graphs and split-stars, Ars Combin. 59 (2001) 107–116)...

متن کامل

On the Toughness of Graphs

The toughness of a graph is the graph’s vulnerability to having vertices removed. For example, if vertices of the graph represent homes, and the edge of the graph represent telephone lines connecting them, then the toughness measures how badly telephone communication can broken down by relatively few lightening strikes. In this paper the maximum networks are obtained with prescribed order and t...

متن کامل

The toughness of cubic graphs

The toughness of a graph G is the minimum of |S|/k(G − S) over all sets S of vertices such that k(G − S) ≥ 2. In this paper upper bounds on the toughness of a cubic graph are derived in terms of the independence number and coloring parameters. These are applied to cycle permutation graphs. Running head: as per title.

متن کامل

The spectrum and toughness of regular graphs

In 1995, Brouwer proved that the toughness of a connected k-regular graph G is at least k/λ − 2, where λ is the maximum absolute value of the non-trivial eigenvalues of G. Brouwer conjectured that one can improve this lower bound to k/λ − 1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λ. In this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(98)00156-3